Follow Slashdot blog updates by subscribing to our blog RSS feed

 



Forgot your password?
typodupeerror
×
Programming Technology

Ultra-Stable Software Design in C++? 690

null_functor asks: "I need to create an ultra-stable, crash-free application in C++. Sadly, the programming language cannot be changed due to reasons of efficiency and availability of core libraries. The application can be naturally divided into several modules, such as GUI, core data structures, a persistent object storage mechanism, a distributed communication module and several core algorithms. Basically, it allows users to crunch a god-awful amount of data over several computing nodes. The application is meant to primarily run on Linux, but should be portable to Windows without much difficulty." While there's more to this, what strategies should a developer take to insure that the resulting program is as crash-free as possible?
"I'm thinking of decoupling the modules physically so that, even if one crashes/becomes unstable (say, the distributed communication module encounters a segmentation fault, has a memory leak or a deadlock), the others remain alive, detect the error, and silently re-start the offending 'module'. Sure, there is no guarantee that the bug won't resurface in the module's new incarnation, but (I'm guessing!) it at least reduces the number of absolute system failures.

How can I actually implement such a decoupling? What tools (System V IPC/custom socket-based message-queue system/DCE/CORBA? my knowledge of options is embarrassingly trivial :-( ) would you suggest should be used? Ideally, I'd want the function call abstraction to be available just like in, say, Java RMI.

And while we are at it, are there any software _design patterns_ that specifically tackle the stability issue?"
This discussion has been archived. No new comments can be posted.

Ultra-Stable Software Design in C++?

Comments Filter:

The hardest part of climbing the ladder of success is getting through the crowd at the bottom.

Working...